Interaction of D with Ti-Adsorbed Polyaniline and Implication for Hydrogen Storage
Tae Seung Kim, Kyung Jun Kim, Sam K. Jo, and Jihwa Lee

J. Phys. Chem. B, Article ASAP
Downloaded from http://pubs.acs.org on December 5, 2008

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Interaction of \(\text{D}_2 \) with Ti-adsorbed polyaniline and Implication for Hydrogen Storage

Tae Seung Kim,† Kyung Jun Kim,† Sam K. Jo,‡ and Jihwa Lee*,†

School of Chemical and Biological Engineering, Seoul National University, Sillim San 56-1, Gwanak, Seoul 151-744, South Korea, and Department of Chemistry, Kyung Won University, Sungnam, Kyungki 461-701, South Korea

Received: April 16, 2008; Revised Manuscript Received: October 21, 2008

Interaction of \(\text{D}_2 \) with Ti-adsorbed polyaniline (PANI) and \(\text{TiO}_2 \) at low Ti coverages has been investigated by temperature programmed desorption, Auger electron spectroscopy, and \(\text{H}_2-\text{D}_2 \) exchange in a high pressure cell. In contrast to recent DFT calculations (Lee et al. Phys. Rev. Lett. 2006, 97, 56104–56107) that have shown a multiple number of molecular hydrogen chemisorption on Ti-decorated PANI, only 0.52 \(\text{D}_2 \) molecules per Ti atomically adsorb on Ti-deposited PANI at 87 K at a nominal Ti coverage of 2 ML. Broad TPD spectra of \(\text{D}_2 \), HD, and \(\text{H}_2 \) were observed, which showed a common peak at 250 K and another isotope-dependent peak at higher temperature. Ti deposited on \(\text{TiO}_2 \) forms clusters with a size distribution at 87 K, on which \(\text{D}_2 \) atomically adsors. As the Ti coverage increases, the \(\text{D}_2 \) desorption peak gradually shifts from 200 to 260 K and the number of \(\text{D}_2 \) molecules adsorbed per Ti also increases from 0.26 at 0.1 ML to 0.87 at 2 ML. We attribute this to the fact that \(\text{D}_2 \) adsors on larger clusters with a greater adsorption energy. TPD spectra of \(\text{D}_2 \) desorbing from Ti (2 ML)/PANI and Ti (1 ML)/\(\text{TiO}_2 \) look very similar to each other. This led us to conclude that Ti also adsors on PANI in clusters. We suggest that no molecular \(\text{D}_2 \) adsorption on Ti/PANI at 87 K is due to a reduced electron backdonation ability of Ti upon clustering. The small number of adsorbed \(\text{D}_2 \) per Ti on both substrates was ascribed to irreversible \(\text{D}_2 \) adsorption only on relatively large Ti clusters, while \(\text{D}_2 \) adsors reversibly on small clusters. This was indirectly confirmed by the observation that continuous \(\text{H}_2-\text{D}_2 \) isotope exchange occurs to produce HD on Ti/PANI as well as on Ti/\(\text{TiO}_2 \) at 106 K in a high pressure cell at 5.7 mTorr. Desorption mechanisms involving H atom abstraction from PANI by Ti clusters are proposed to account for the complex isotope-dependent TPD spectra. Implication of the present results for hydrogen storage based on Ti-dispersed polymers is briefly addressed.

1. Introduction

High prospects for hydrogen-fuel-cell-powered vehicles have stimulated much research on the hydrogen storage problem in recent years.1 Among many different approaches, hydrogen storage based on reversible molecular hydrogen adsorption is the most attractive for its conceptual and operational simplicity. However, no suitable storage material which meets the economical capacity of \(\geq 6.3 \) wt % at near ambient conditions has yet been demonstrated. The inherent difficulty lies in the fact that the physisorption energy of \(\text{H}_2 \) is too small due to its very small polarizability and zero dipole moment.

Very recently, it has been shown by density functional theory (DFT) calculations that hydrogen adsors molecularly onto early transition metals such as Sc, Ti, and V atomically dispersed on fullerenes,2 carbon nanotubes,3 and various conducting polymers.4 For example, it is suggested that Ti atoms adsors at two different sites on a polyaniline (PANI) chain, one above the benzene ring (out of plane) and the other between the N–H bond (in plane), as shown in Figure 1.4 While the first H\(_2\) molecule adsors atomically, up to four H\(_2\) molecules can bind to each in-plane Ti atom and three H\(_2\) to each out-of-plane Ti atom with an average adsorption energy of 0.3–0.5 eV per H\(_2\), respectively. A similar adsorption behavior has been suggested for metal–ethylene complexes.5,6

![Figure 1. Structural formula of (a) leucoemeraldine–PANI; (b and c) the theoretically calculated bonding configurations of Ti-decorated PANI with adsorbed hydrogen (ref 4), where H (yellow), H\(_2\) (brown), N (purple), C (green), and Ti (blue) are represented by colored spheres. Three and four H\(_2\) molecules adsorb onto the Ti atoms coordinated with the phenyl ring (b) and inserted between the N–H bond (c), respectively.](image)

Molecular H\(_2\) binding to these transition metal atoms is known to occur via the so-called Kubas interaction,7 in which electrons are donated from the H\(_2\) σ orbital to the empty metal d orbital.
and simultaneously backdonated from the filled metal d orbital to the unoccupied H$_2$ σ^* orbital. The dihydrogen bonding to transition metal atoms is well-known for coordination compounds, and the H–H bond length widely varies depending on the degree of the electron backdonation to the H$_2$ σ^* orbital. The unusually low vibrational energy of 398 meV observed for hydrogen adsorbed on a Ni (510) surface has also been attributed to molecular H$_2$ chemisorbed on the step sites by the Kubas interaction. \(^9\)

The relatively large molecular adsorption energy of hydrogen on the transition-metal-decorated conducting polymers renders these materials ideal for reversible hydrogen storage with a high gravimetric density operating at moderate temperature and pressure conditions. Recent reports on an enhanced storage capacity of chemically reduced mesoporous and microporous Ti oxides by Hu et al.\(^{10}\) and of a low-coordinate Ti(III) complex grafted onto mesoporous silica by Hamaed et al.\(^{11}\) have also been attributed to a similar H$_2$ interaction with coordinatively unsaturated Ti centers. At this point, it is quite desirable to experimentally verify molecular H$_2$ chemisorption on this kind of material and to define unforeseen practical problems in hydrogen storage application.

In this paper, we report results of experimental studies on the interaction of D$_2$ with Ti-adsorbed PANI by TPD, AES, and H$_2$–D$_2$ isotope exchange at high pressure. In contrast to recent DFT calculations,\(^5\) no molecular chemisorption of D$_2$ was observed and only 0.52 D$_2$ molecules atomically adsorb per Ti on Ti-deposited PANI at 87 K. Upon heating, D atoms adsorbed on Ti react with H atoms of PANI to result in broad desorption spectra of D$_2$, HD, and H$_2$ with a common peak at 250 K and another isotope-dependent higher temperature peak. We show that D$_2$ adsorbs on PANI and TiO$_2$ in clusters and D$_2$ atomically adsorbs more strongly on a larger cluster. We further show that H$_2$–D$_2$ isotope exchange to produce HD occurs on both samples via reversible hydrogen adsorption at 5.8 mTorr, from which we conclude that D$_2$ reversibly adsorbs on small clusters. Then, the discrepancy between the theory and experiment is discussed in terms of Ti clustering and size-dependent adsorption energies of atomically and molecularly adsorbed D$_2$. Desorption mechanisms are also proposed to account for the complex isotope-dependent TPD spectra of D$_2$-saturated Ti/PANI. Finally, implication of the present results for hydrogen storage is briefly mentioned.

2. Experimental Section

The experiments were performed in an ultrahigh vacuum (UHV) chamber with a base pressure of 7×10^{-11} Torr pumped by a 540 L/s turbomolecular pump. It is equipped with a differentially pumped quadrupole mass spectrometer (QMS), an e-beam evaporator, instruments for Auger electron spectroscopy (AES), and a quartz crystal microbalance (QCM). The samples used are films (3000 Å) of leucoemeraldine base form of PANI (MW \sim20000), the fully reduced form (Figure 1a), synthesized by a known procedure.\(^{12,13}\) The PANI was dissolved in tetrahydrofuran and spin-coated onto Si(100) wafers. After drying, the sample was mounted on a rotatable XYZ manipulator, and it could be cooled down to 87 K with liquid nitrogen or resistively heated to 1200 K. TiO$_2$ prepared by depositing Ti on a SiO$_2$/Si (100) wafer in an O$_2$ atmosphere and other organic substrate such as polyvinyl alcohol (PVA), polyethylene, and self-assembled monolayers of undecanethiol and mercapto-undecanol on Au(111) were also used as substrates.

A controlled amount of Ti was deposited in situ on the sample surface at 87 K by e-beam evaporation, and the coverage of Ti was calibrated using a QCM. Unless specified otherwise, a nominal Ti coverage of 2 ML was typically employed. Here, we define the nominal 1 ML as the atom density (1.35 \times 1015 atoms/cm2) of a hexagonally closed-packed Ti (0001) plane. According to the AFM image of the PANI film in Figure 2, the actual surface is at least twice that of a perfectly flat surface, and hence, the actual Ti coverage on PANI is at most a half of the nominal one reported.

TPD measurements were made by saturating the Ti/PANI samples at 87 K with D$_2$ using a gas doser. In TPD, molecules desorbing only from the front sample surface were detected by placing the sample very close to a protruding cylindrical aperture (5 mm diameter) in the wall of the differentially pumped QMS housing. A sample heating rate of 2 K/s was employed. Integrated TPD signals were calibrated against a separately measured, precisely known value for a 1 ML-saturated Si(100)-2×1:H surface. AES was performed with a 3 kV electron beam at a beam current of 1 µA. Electron-beam-induced degradation of PANI sample was negligible, and surface charging was not observed at all.

H$_2$–D$_2$ isotope exchange experiments were carried out in a small O-ring sealed high pressure cell (\sim200 mL volume) inside the UHV chamber. There is a micropinhole in the wall of the cell so that the partial pressures of the hydrogen isotope species in the cell leaking out into the UHV chamber can be monitored in real time with a QMS during the exchange reaction. The leak rates of hydrogen isotopes through the micropinhole were too small to cause an appreciable pressure decrease in the cell during a typical exchange reaction time of \sim5 min. The data presented below were corrected for the mass-dependent effusion rates measured by filling the cell with a 1:1 H$_2$/D$_2$ gas mixture in the presence of a Ti-free PANI sample.

3. Results and Discussion

3.1. Surface Morphology of PANI. The AFM images of a typical PANI sample are shown in Figure 2. Interestingly, cylindrical pores of about 100 nm deep and 200 nm in diameter are randomly distributed on a relatively flat surface with a root-mean-square roughness of \sim5 Å. The density of the pores counted from a scanning electron microscopy image of a much larger area is on average 8.5 pores/µm2. If one assumes that the PANI chains are packed with the molecular planes parallel to the substrate, the maximum height variation corresponds to about two to three layers. If we neglect the height modulation,
the surface area is about 1.5 times larger than the nominal one because of the pores. The length l of the 1D height profile in Figure 2d can be calculated from the digital data to get the ratio $\alpha = l/d$, where d is the distance between the end points. The effective surface area is about α^2 times larger than the nominal one. The effective surface area estimated in this way is about 2.5 times that of the nominal one. Thus, the actual surface area of a typical PANI sample is about twice the nominal one.

3.2. TPD Spectra of D$_2$−Ti/PANI. Figure 3 shows the TPD spectra of various species desorbing from a pristine PANI after dosing the sample at 87 K with D$_2$ to saturation. No D$_2$ desorption is observed in the entire temperature range, and PANI starts to decompose above \sim600 K to result in desorption of H$_2$ along with small amounts of C$_6$H$_6$ and C$_6$H$_5$NH$_2$. The result clearly shows that D$_2$ does not adsorb on PANI even at 87 K, which is in contrast to a recent report by Cho et al.14,15 that a HCl-treated PANI absorbs a large amount of H$_2$ (\sim6 wt %) at room temperature under 9.3 MPa. However, Panella et al.16 could not reproduce their results. H$_2$ interacts with an acid-doped PANI to induce a reversible change in the conductivity at room temperature, but a dedoped PANI shows no such a response17 in agreement with our result.

In contrast to Ti-free PANI, Ti-adsorbed PANI starts to decompose at \sim250 K to give a broad H$_2$ desorption peak centered at \sim370 K with a tail extending to higher temperatures (Figure 4a). H$_2$ is the only desorbing species below 600 K. Ti-catalyzed H$_2$ desorption is evident from the low desorption onset temperature of \sim250 K. Ti presumably abstracts H atoms from the PANI chains, whereby recombinative desorption of H$_2$ occurs on the Ti atom(s) with a lower activation energy compared to that from Ti-free PANI.

D$_2$ adsorbs on Ti/PANI at 87 K to result in TPD spectra of D$_2$, HD, and H$_2$, shown in Figure 4b−d, in which Ti deposition was made under a direct D$_2$ flux on the sample surface in order to eliminate interference by H$_2$ adsorption from the background gas during Ti deposition. All of the molecular hydrogen isotopes start to desorb at a very low temperature of \sim110 K, giving a common peak at \sim250 K in addition to an isotope-dependent peak at high temperatures. Integrating the TPD signals, we estimate that 0.43 D$_2$, 0.18 HD, and 0.10 H$_2$ molecules per Ti desorb, which yields net D$_2$ adsorption of 0.52 D$_2$ per Ti. When the sample was exposed to D$_2$ for the second time after the first TPD run without further Ti deposition, D$_2$ did not adsorb at all. This indicates that Ti atoms have formed a stable compound with PANI during heating to 600 K to completely lose their adsorption capacity toward D$_2$.

The very broad spectra suggest that they consist of two overlapping peaks. Though somewhat arbitrary, we have resolved each spectrum into two components, a common peak at 250 K and the rest. These are designated as β_2 and β_1 peaks, respectively. We assign both β_1 and β_2 peaks to desorption of atomic hydrogen based on their large peak width19 and considerable isotope scrambling. The most significant TPD results are that (1) no molecular D$_2$ adsorption is observed on Ti/PANI and (2) only 0.52 D$_2$ molecules per Ti atomically adsorb at a Ti coverage of 2 ML. These are in sharp contrast to the DFT calculations by Lee et al.4 that predicted molecular adsorption of 3.5 H$_2$ in addition to atomic adsorption of one H$_2$ per Ti. This implies that Ti atoms do not bind to PANI as in Figure 1 but have some other bonding configurations under our experimental conditions.

3.3. Ti Clustering on PANI and TiO$_2$ Substrates. Recent investigations on the initial stage of interface formation in vapor deposition of Ti on various self-assembled monolayers$^{19−22}$ and on nitrogen and halogen containing polymer surfaces23 have shown that a large fraction of incident Ti atoms do not stick to these organic substrates at room temperature but form isolated clusters, indiscriminately reacting with the substrates. Isolated Ti clusters may also form on PANI, which may be the reason for the small number of D$_2$ molecules adsorbed per Ti. To check this possibility, we have performed TPD measurements with Ti atoms deposited on TiO$_2$/SiO$_2$ substrate at 87 K. D$_2$ desorption also starts at 110 K to give a peak at \sim200 K at 0.1 ML, which gradually shifts with increasing Ti coverage to \sim270 K at 2 ML (Figure 5). A higher temperature peak grows in at coverage \geq 1 ML. According to DFT calculations by Kumar et al.24 the dissociative adsorption energy of H$_2$ monotonically increases with the number of Ti atoms in a cluster. Similar behavior has also been reported for Mg clusters.25 Thus, the broad TPD spectra showing continuous peak shift in Figure 5 can be attributed to D$_2$ adsorption on Ti clusters formed on TiO$_2$/SiO$_2$ with a coverage-dependent size distribution.
Interestingly, the number of D₂ molecules adsorbed per Ti listed in Figure 5 is only 0.26 at 0.2 ML and almost linearly increases to 0.87 at 2 ML. Though not shown here, it reaches a maximum of 0.95 H₂/Ti at 3 ML and then decreases to 0.71 D₂/Ti at 7 ML. Clustering is not extensive at small coverage, and therefore, very small clusters are probably the dominant species. D₂ may adsorb on these small clusters reversibly even at 87 K because of its small adsorption energy; i.e., they all desorb immediately when D₂ dosing is stopped in UHV. Conversely, D₂ may adsorb irreversibly only on relatively large clusters.

Reversible hydrogen adsorption was indeed confirmed by the observation that continuous H₂-D₂ isotope exchange occurs to produce HD on Ti/PANI (Figure 6) as well as on Ti/TiO₂ at 106 K when a 1:1 H₂-D₂ mixture of 7.3 mTorr was introduced into a high pressure cell. Introduction of the gas causes the sample temperature to rise from 87 to 106 K due to gas conduction. If the TPD spectra in Figure 4b-d were obtained at 106 K instead of at 87 K, the number of D₂ molecules adsorbed per Ti would be smaller than 0.52 because hydrogen near the leading edge of the TPD spectra cannot remain adsorbed in UHV. Nevertheless, adsorption of 0.67 hydrogen molecules/Ti is estimated from the difference in the final pressures in Figure 6. The significant amount of additional hydrogen adsorption is evidently due to reversible hydrogen adsorption at 5.7 mTorr. Thus, we attribute D₂ adsorbed per Ti much smaller than one on Ti/TiO₂ at 2 ML to reversible adsorption on small clusters. As the coverage increases, the average cluster size also increases and consequently more D₂ would adsorb irreversibly as observed. The decrease in D₂ adsorption beyond 3 ML can be attributed to the formation of 3D clusters which adsorb D₂ only on their surfaces.

We note that the total D₂ (D₂ + HD/2) TPD spectrum taken with Ti (2 ML)/PANI shown by the dashed curve in Figure 6 looks similar to that with Ti (1 ML)/TiO₂ sharing common features: same onset temperature, similar peak temperature, ~0.5 D₂ molecules adsorbed per Ti, and H₂-D₂ isotope exchange at high pressure. The similarity leads us to conclude that Ti clusters also form on the PANI surface. We also attribute the small number of D₂ adsorbed per Ti on Ti/PANI to reversible adsorption on small clusters. Similar spectra obtained at different nominal coverages could be due to different effective surface areas of the two substrates. TPD spectra (Figure 7) taken with samples such as PVA, PE, and SAMs on Au(111) suggest that Ti clustering and reaction with organic substrates below room temperature are general phenomena on organic substrates. All TPD spectra are qualitatively similar to those obtained with PANI, starting at ~110 K to give the β₁ peaks of D₂ and HD at 230–250 K. Ti clusters abstract H atoms even from PE which has only the -CH₂ groups without any reactive functional group.

It has been shown previously by DFT calculations for Ti-decorated polyacetylene and fullerene that Ti clustering is energetically favored. Ti atom binds to PANI with a binding energy comparable to that on polyacetylene and fullerene (2.45 eV) and fullerene (2.35 eV) and hence, similar energetics is expected for Ti clustering on PANI. Ti clustering on these materials is driven by the large cohesive energy of Ti. Clustering reduces the number of molecularly adsorbed H₂ molecules as well as the adsorption energy of H₂. A proper amount of electron backdonation to the D₂ σ* orbital seems to be essential for...
whereas the opposite is true for Ti adsorbed on PANI. Similar order desorption.

\[E_{\text{des}} \sim 0.25 \text{ eV} \]

The peak temperature \(T_p \) for first-order desorption.

3.4. Auger Electron Spectra of D\(_2\)-Ti/PANI. AE spectra (Figure 8) provide information on the bonding interactions of Ti with PANI. A pristine PANI shows a broad graphite-like C (KVV) \(^{31}\) peak of aromatic carbons at 271.9 eV and a N (KVV) peak at 384.0 eV. Upon adsorbing 2 ML of Ti at 87 K, the L\(_{2,3}\)M\(_{2,3}\)M\(_{2,3}\) and L\(_{2,3}\)M\(_{2,3}\)V peaks of Ti appear at 386.9 and 418.2 eV, respectively, and the C (KVV) peak is significantly attenuated by the overlying Ti atoms. However, the graphite-like carbon character is still maintained. No information is available from the N (KVV) peak because of its small peak intensity and interference by the close-lying Ti (L\(_{2,3}\)M\(_{2,3}\)M\(_{2,3}\)) peak. After a usual TPD run, the carbon peak now (Figure 9d) looks more or less like that of carbide-like carbon.\(^ {31}\) Carbide formation is more clearly visible upon further depositing 2 ML of Ti at 87 K. The spectrum at the bottom is shown as a reference for metallic Ti after depositing 50 ML of Ti.

molecular D\(_2\) adsorption. When clustering occurs, much of their valence electrons are used to make strong Ti–Ti bonds and not many electrons are available for backdonation. This is believed to be the reason why we do not see in TPD a desorption peak of molecularly adsorbed D\(_2\) on Ti/PANI at 87 K. One may argue that a majority of the reversibly adsorbed species in the exchange experiments could be molecular hydrogen weakly chemisorbed on small Ti clusters. We do not entirely rule out this possibility. If it is the case, one can roughly estimate the upper limit of the molecular adsorption energy as \(\sim 0.25 \) eV from the absence of a distinct desorption peak down to 90 K and the general relation\(^ {30}\) \(E_{\text{des}} \sim 31 \Delta T_p \) between the desorption activation energy \((E_{\text{des}}) \) and the peak temperature \((T_p) \) for first-order desorption.

Figure 8. Auger electron spectra taken in sequence: (a) pristine PANI; (b) after depositing 2 ML of Ti at 87 K; (c) after D\(_2\) saturation at 87 K followed by heating to 500 K; (d) after further depositing 2 ML of Ti at 87 K; (e) a reference spectrum for metallic Ti after depositing 50 ML of Ti.

3.5. Adsorption and Desorption of Hydrogen on Ti/PANI.

On the basis of the TPD and AES results presented above, we now can draw a fairly consistent picture of the adsorption and desorption of hydrogen on Ti/PANI, as schematically depicted in Figure 9, where each number represents an elementary process described below. Ti adsorbs on PANI in clusters at 87 K with a certain size distribution, and the average cluster size increases with increasing Ti coverage. These clusters form polar bonds with carbon atoms without abstracting phenyl hydrogen. D\(_2\) atomically adsorbs only on relatively large clusters. The \(\beta_1 \) (1) and \(\beta_2 \) (2) peaks of D\(_2\) are evidently due to recombinative desorption of D atoms adsorbed on these clusters. The two peaks are associated with Ti clusters of different sizes coexisting on the surface. On the other hand, H atoms desorbing as HD and H\(_2\) have to come from PANI because H\(_2\) desorption from the background was blocked by depositing Ti in a D\(_2\) atmosphere. When properly scaled, the \(\beta_2 \) peaks of D\(_2\) and HD exactly coincide with each other up to the peak temperature. This indicates that they desorb by the same mechanism. Namely, Ti clusters partially abstract H atoms from PANI which they are in contact with upon deposition at 87 K, and the abstracted H atom recombines with a D atom adsorbed on the cluster to give the \(\beta_2 \)-HD peak (4). As the bonding configurations of Ti in Figure 1 suggest, H atoms are probably abstracted from the more vulnerable –NH– moiety (3) rather than from the phenyl ring.

Large Ti clusters can abstract more than one H atom from the –NH– groups, and these H atoms recombine with one another to desorb as the \(\beta_2 \)-H\(_2\) peak (5). However, the probability of H–D recombination is much greater compared to that of H–H recombination because the D atom is the majority species on a cluster at low temperature, and therefore, the intensity of the \(\beta_2 \)-H\(_2\) peak is very small. Referring to the Ti-catalyzed PANI decomposition in Figure 4a, we attribute the \(\beta_1 \) peaks of HD and H\(_2\) to desorption involving H atoms migrating from phenyl rings to Ti clusters (6) above \(\sim 250 \) K. These H atoms either recombine with a D atom or with another H atom to desorb as HD (7) and H\(_2\) (8), respectively. When the sample temperature

Figure 9. Schematic picture showing adsorption and desorption of hydrogen on Ti-deposited PANI. The numbers indicate elementary reactions leading to the desorption peaks of D\(_2\), HD, and H\(_2\) in the TPD spectra of Figure 4 (refer to the text).
reaches \(\sim 300 \) K, about one-third of the total adsorbed D atoms on large Ti clusters are still left. Thus, H atoms migrating to a Ti cluster will preferentially recombine with a D atom to desorb as \(\beta_1 - \text{HD} \). On the other hand, at a later stage, little D atoms are left on the cluster and then the migrating H atoms will predominantly recombine with one another to desorb as \(\beta_1 - \text{H}_2 \). The difference of \(\sim 100 \) K between the peak temperatures of the two \(\beta_1 \) peaks can be qualitatively explained.

3.6. Implication for Hydrogen Storage

In contrast to recent DFT calculations, no molecular D\(_2\) adsorption was observed and only 0.52 D\(_2\)/Ti atomically adsorb on Ti-deposited PANI at 87 K. This implies that Ti atoms do not bind to PANI as theoretically predicted. This is also the case with other organic substrates. It seems that Ti-dispersed polymer is not a good medium for hydrogen storage. The main obstacle is Ti clustering favored by the large cohesive energy of Ti, which may be assisted by a poor energy transfer in the collision of incident Ti atom with polymer surfaces. Thus, Ti clustering is unavoidable in physical vapor deposition on organic substrates. Abstraction of H atoms from polymer chains by Ti below room temperature can also be a problem. The high reactivity of Ti is also associated with Ti clustering. In practical application, atomic dispersion of Ti in the bulk of polymer is needed, which is a challenging problem. However, the problems may be overcome by employing other clever Ti dispersion methods or by properly designing polymer structure so that strongly Ti-binding functional groups can be spatially separated. From this point of view, metal organic frames\(^{34}\) can be a good candidate, though a high gravimetric storage density is difficult to achieve because of their large masses.

4. Summary and Conclusion

In contrast to recent DFT calculations, only 0.52 D\(_2\) molecules per Ti atomically adsorb on Ti-deposited PANI at 87 K at a nominal Ti coverage of 2 ML. Broad TPD spectra of D\(_2\), HD, and \(\text{H}_2 \) were observed, which showed a common peak at 250 K and another isotope-dependent peak at higher temperature. The TPD spectra of D\(_2\) desorbing from Ti/TiO\(_2\) show gradual peak shift from 200 to 260 K and an almost linear increase in the number of adsorbed D\(_2\) molecules per Ti from 0.26 at 0.1 ML to 0.97 D\(_2\)/Ti at 3 ML. This was interpreted as the deposited Ti forms clusters of various sizes and the adsorption energy of D\(_2\) increases with increasing cluster size. As a result, D\(_2\) adsorbs irreversibly only on relatively large clusters while reversibly on small clusters. Ti also forms clusters on PANI and other organic substrates, resulting in TPD spectra qualitatively similar to that from Ti/TiO\(_2\). Reversible adsorption was confirmed by the observation that continuous H\(_2\)--D\(_2\) isotope exchange occurs on Ti/PANI and on Ti/TiO\(_2\) in a high pressure cell at 7.3 mTorr and 0.15 more hydrogen molecules/Ti adsorb than that in TPD. Thus, we attribute the small number of atomically adsorbed D\(_2\) molecules on Ti/PANI to weak reversible adsorption on small clusters.

Mechanisms of desorption from D\(_2\)-saturated Ti/PANI are proposed; Ti clusters formed upon deposition at 87 K abstract H atoms from the \(\sim \text{NH}^- \) groups, and D\(_2\) atomically adsorbs on the clusters. Upon heating, these D and H atoms recombine with one other to give desorption peaks of D\(_2\), HD, and \(\text{H}_2 \) at 250 K. Above \(\sim 250 \) K, Ti clusters also abstract phenyl H atoms, which recombine with a D atom left on the cluster or with each other to give desorption peaks of HD and \(\text{H}_2 \), respectively, at higher temperatures. Recombination of D atoms adsorbed on large clusters also gives a high temperature peak. Phenyl rings lose their H atoms during TPD, whereby carbon atoms convert to a carbide, losing their adsorption capacity toward D\(_2\).

Acknowledgment. This work has been partially supported by the Ministry of Science and Technology of Korea through the 21st Century Frontier Research Program of the Hydrogen Energy R&D Center and by Hanwha Chemical Corporation.

References and Notes

(18) For first-order desorption of a molecular adsorbate with a peak temperature of 250 K in TPD can be estimated as 0.65 eV from the Redhead relation (ref 29). The peak width (FWHM) calculated assuming a typical pre-exponential factor of \(10^15 \) s is 20 K, which is much smaller than the observed width of \(\sim 115 \) K.
(26) Kim, T. S.; Kim, K. J.; Lee, J. To be published.

JPS033243

Kim et al.